L-type calcium channel alpha-subunit and protein kinase inhibitors modulate Rem-mediated regulation of current.

نویسندگان

  • Shawn M Crump
  • Robert N Correll
  • Elizabeth A Schroder
  • William C Lester
  • Brian S Finlin
  • Douglas A Andres
  • Jonathan Satin
چکیده

Cardiac voltage-gated L-type Ca channels (Ca(V)) are multiprotein complexes, including accessory subunits such as Ca(V)beta2 that increase current expression. Recently, members of the Rad and Gem/Kir-related family of small GTPases have been shown to decrease current, although the mechanism remains poorly defined. In this study, we evaluated the contribution of the L-type Ca channel alpha-subunit (Ca(V)1.2) to Ca(V)beta2-Rem inhibition of Ca channel current. Specifically, we addressed whether protein kinase A (PKA) modulation of the Ca channel modifies Ca(V)beta2-Rem inhibition of Ca channel current. We first tested the effect of Rem on Ca(V)1.2 in human embryonic kidney 293 (HEK-293) cells using the whole cell patch-clamp configuration. Rem coexpression with Ca(V)1.2 reduces Ba current expression under basal conditions, and Ca(V)beta2a coexpression enhances Rem block of Ca(V)1.2 current. Surprisingly, PKA inhibition by 133 nM H-89 or 50 microM Rp-cAMP-S partially relieved the Rem-mediated inhibition of current activity both with and without Ca(V)beta2a. To test whether the H-89 action was a consequence of the phosphorylation status of Ca(V)1.2, we examined Rem regulation of the PKA-insensitive Ca(V)1.2 serine 1928 (S1928) to alanine mutation (Ca(V)1.2-S1928A). Ca(V)1.2-S1928A current was not inhibited by Rem and when coexpression with Ca(V)beta2a was not completely blocked by Rem coexpression, suggesting that the phosphorylation of S1928 contributes to Rem-mediated Ca channel modulation. As a model for native Ca channel complexes, we tested the ability of Rem overexpression in HIT-T15 cells and embryonic ventricular myocytes to interfere with native current. We find that native current is also sensitive to Rem block and that H-89 pretreatment relieves the ability of Rem to regulate Ca current. We conclude that Rem is capable of regulating L-type current, that release of Rem block is modulated by cellular kinase pathways, and that the Ca(V)1.2 COOH terminus contributes to Rem-dependent channel inhibition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L-type calcium channel -subunit and protein kinase inhibitors modulate Rem-mediated regulation of current

Crump, Shawn M., Robert N. Correll, Elizabeth A. Schroder, William C. Lester, Brian S. Finlin, Douglas A. Andres, and Jonathan Satin. L-type calcium channel -subunit and protein kinase inhibitors modulate Rem-mediated regulation of current. Am J Physiol Heart Circ Physiol 291: H1959–H1971, 2006. First published April 28, 2006; doi:10.1152/ajpheart.00956.2005.—Cardiac voltage-gated L-type Ca cha...

متن کامل

Kinase regulation of hENaC mediated through a region in the COOH-terminal portion of the alpha-subunit.

In an effort to gain insight into how kinases might regulate epithelial Na(+) channel (ENaC) activity, we expressed human ENaC (hENaC) in Xenopus oocytes and examined the effect of agents that modulate the activity of some kinases. Activation of protein kinase C (PKC) by phorbol ester increased the activity of ENaC, but only in oocytes with a baseline current of <2,000 nA. Inhibitors of protein...

متن کامل

Modulation of cardiac Ca2+ channels in Xenopus oocytes by protein kinase C.

L-Type calcium channel was expressed in Xenopus laevis oocytes injected with RNAs coding for different cardiac Ca2+ channel subunits, or with total heart RNA. The effects of activation of protein kinase C (PKC) by the phorbol ester PMA (4 beta-phorbol 12-myristate 13-acetate) were studied. Currents through channels composed of the main (alpha 1) subunit alone were initially increased and then d...

متن کامل

Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C.

Voltage-dependent L-type Ca(2+) channels are multisubunit transmembrane proteins, which allow the influx of Ca(2+) (I:(Ca)) essential for normal excitability and excitation-contraction coupling in cardiac myocytes. A variety of different receptors and signaling pathways provide dynamic regulation of I:(Ca) in the intact heart. The present review focuses on recent evidence describing the molecul...

متن کامل

Dose-dependent and Isoform-specific Modulation of Ca2+ Channels by RGK GTPases

Although inhibition of voltage-gated calcium channels by RGK GTPases (RGKs) represents an important mode of regulation to control Ca(2+) influx in excitable cells, their exact mechanism of inhibition remains controversial. This has prevented an understanding of how RGK regulation can be significant in a physiological context. Here we show that RGKs-Gem, Rem, and Rem2-decreased Ca(V)1.2 Ca(2+) c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 291 4  شماره 

صفحات  -

تاریخ انتشار 2006